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PERSPECTIVE

Modulation of Cell State to Improve Drug Therapy

James M. Gallo1,2,*

Manipulation of cell state transitions – programs between 
cancer stem cells and differentiated cancer cells – may offer 
a means to enhance drug efficacy. A mathematical model 
that contrasted mutant IDH1 brain tumor growth under dif-
ferent temozolomide (TMZ) conditions showed tumor growth 
decreased in TMZ- resistant tumors under oscillating D2HG 
conditions, a mechanism to manipulate cell state. Future 
work is needed to complete mechanistic studies to expand 
and validate the simulations.

BACKGROUND

The majority of advances in anticancer drug therapy ema-
nate from the drug discovery space – new molecules and 
new targets – rather than from new drug usage paradigms. 
Notwithstanding pharmacokinetic (PK) and pharmacody-
namic (PD) input to design more efficacious and rational 
schedules, most drugs are administered in a uniform manner.

It is well appreciated that tumors consist of different cell 
types that possess a certain degree of plasticity.1 Of partic-
ular interest is the transition between cancer stem cells and 
differentiated cancer cells that are linked to epigenetic re-
programing.1 By modulating cell state equilibria with drugs, 
cell survival programs may be disrupted and less durable, 
favoring drug activity.

Brain tumors provide a means to test the hypothesis that 
manipulation of cell state will improve drug therapy. Brain 
tumors possessing the mutant IDH1 enzyme – about 70% 
of grade II and III brain tumor patients – produce copious 
amounts of the oncometabolite, D- 2- hydroxyglutarate 
(D2HG), that is responsible for the G- CIMP phenotype, 
methylated DNA and histones, that prevent stem cell dif-
ferentiation to glioma cells.2,3 A mainstay of drug therapy 
for brain tumors is the alkylating agent TMZ that invariably 
losses its effectiveness due to adaptive resistance. Thus, the 
interplay between D2HG and TMZ provided a viable means 
to test the merits of cell state modulation as a new strat-
egy to improve drug therapy. Specifically, models were de-
rived to simulate and compare different treatment scenarios; 
tumor growth under control, and TMZ- sensitive and TMZ- 
resistant conditions with and without cell state modulation.

CELL STATE MODEL

A model depicting quiescent (Q) cells, glioma stem (GS) 
cells, and glioma proliferating (GP) cells and transfer 
amongst these types was used to demonstrate the effects 

of cell state modulation (Figure 1). The model considered 
two intermediate states between GS and GP cells to cap-
ture the time- dependent progression. Cell proliferation of 
GS and GP cells is included as is death of each cell type. 
Mutant IDH1 brain tumors grow slowly,4–6 which was used 
as a guide to set the growth characteristics over a 1- year 
time period. Thus, the control growth model consisted of 
three components – cell proliferation, cell state transfer, and 
cell death – that were cast as ordinary differential equations 
(ODEs) as follows:

where LgrowGP and LgrowGS0 = logistic growth func-
tions (cell proliferation),

Summation terms = first- order cell input and output func-
tions (cell transfer), kDead-Control = first- order cell death rate 
constants.

Full details on the model code and parameter values 
are provided in the Supplementary Material. The logistic 
growth functions are often used to characterize cell prolif-
eration and have been previously used for TMZ in patients 
with brain tumors.5,6 For simplicity, proliferation of GP and 
glioma stem state 0 (GS0) cells both used logistic growth 
functions. Cell death in the control model was attributed to 
physiological factors, such as limited blood flow, and the 
microenvironment, such as hypoxia, and again for simplicity, 
utilized equal first- order rate constants for each cell type.

Modeling tumor growth in the presence of TMZ utilized a 
previously developed hybrid physiologically based/PK model 
that introduced the idea of cell type- specific PK/PD models.7 
The patient- based model used a forcing function to charac-
terize the systemic disposition of TMZ that yielded plasma 
concentrations that entered the brain tumor that consisted 
of vascular, interstitial fluid, and intracellular compartments. 
This model considered the pH- dependent intracellular con-
version of TMZ to 5-(3-methyltriazen-1-yl)imidazole-4-car-
boxamide to a methylating cation and the formation of DNA 
adducts, which were treated as a singular entity in both GP 
and GS0 cells. The model can be revised to depict unique 
DNA adducts, such as the lethal O6- methylguanine species, 
and kinetics related to DNA repair in each cell type; however, 

dGP

dt
=LgrowGP+
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i=GS2,Q

(kiGPi−kGPiGP)−kDead-Control ∗GP (1)
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without additional data such assumptions were not made. 
Cell transfer rates were not altered in the presence of TMZ, 
and set to the same values used in the control model (see 
Table S1). TMZ not only affects cell proliferation but, in addi-
tion, activates apoptosis, and, thus, the cell death rate con-
stants were uniformly accelerated 10- fold in each cell type 
relative to the control model. TMZ was administered as the 
standard 150 mg/m2 daily × 5 schedule every 28 days for 12 
cycles. The ODEs for the physiologically based/PK model 
for TMZ are provided in the Supplementary Materials. For 
all TMZ treatments, the TMZ- induced DNA adducts were 
linked to the control tumor growth model as follows:

where two functions, effDNAaddGP and effDNAaddGS0, are 
used to modify the control logistic growth rates (LgrowGP 
and LgrowGS0) in each proliferating cell type. These two 
functions are dependent on the DNA adduct concentrations 
produced normalized to the maximum possible DNA ad-
duct concentration (DNAaddMAX) that was determined by 
assuming no DNA repair in one dosing cycle. The ratio of 
the DNA adducts to the maximum (DNAadd/DNAaddMAX) 
is raised to an exponent (γGP, γGS0) to allow greater flexibility 
in how the DNA adducts modulate the growth rates in each 
cell type; however, for the simulations they were set equal 
to one.

To account for TMZ resistance, the TMZ- sensitive cell 
proliferation and death functions were modified by semi- 
empirical time- dependent exponential functions (see 
Supplementary Material). Without additional data to spec-
ify resistance mechanisms, the exponential functions for cell 
proliferation were analogous in both GP and GS0 cells as 
were the exponential function for cell death applied to GP, 
Q, and GS0 cells (see Table S1). An exponential function to 
account for TMZ resistance has been previously used.6

A number of other assumptions – related to tumor size, 
compartment volumes, and cell fractions – were applied to 
set parameter values prior to conducting the simulations 
(see Supplementary Material). All models were developed 
with Mlxplore (version 2016R1) model exploration and vi-
sualization program that is part of the Lixoft suite (Antony, 
France: Lixoft SAS, 2016).

The simulated tumor growth curves for the control, TMZ- 
sensitive and TMZ- resistant models are shown in Figure 2a. 
In the absence of TMZ, control brain tumor growth increased 
by about 50% over 1 year that is in agreement with a previ-
ous report.4 The 50% reduction in tumor size, due to TMZ 
(blue curve, Figure 2a), over the 1- year period is consistent 
for patients with mutant IDH1 brain tumors.4–6 The TMZ- 
resistant tumor growth shows an initial decline but, after 
about 100 days or 4 cycles of TMZ, starts to increase even-
tually reaching 0.067 L at 1 year or about a 139% increase 
relative to the TMZ- sensitive case.

CELL STATE MODEL WITH MODULATION

The premise that modulation of cell state can improve 
drug activity is predicated upon a means to change cell 
transfer rates among Q, GS cells, and GP cells, as shown 
in Figure 1. For mutant IDH1 brain tumors, we posit that 
D2HG intracellular concentrations can control cell state by 
its action on methylation; high D2HG concentrations favor 
GS cells and block differentiation and low D2HG concen-
trations favor Q and GP cells and differentiation. D2HG 

(4)
effDNAaddGP=1− ((

DNAadd

DNAaddMAX
)γGP )

(5)effDNAaddGS0=1− ((
DNAadd

DNAaddMAX
)γGS0 )

(6)
dGP

dt
=LgrowGP*effDNAaddGP

+
∑

i=GS2,Q

(kiGPi−kGPiGP)−kDead−TMZ ∗GP

(7)
dGS0

dt
=LgrowGS0*effDNAaddGS0

+
∑

i=GP,Q

(kiGS0i−kGS0iGS0)−kDead−TMZ ∗GS0

Figure 1 Pharmacokinetic (PK) and cell state model. (a) PK model of temozolomide (TMZ) used in all models except control. The 
model is analogous to that used previously.7 Following oral administration TMZ is able to cross the blood- brain barrier and enter the 
brain tumor interstitial fluid (IF) and intracellular (IC compartments). In the IC glioma cell and glioma stem (GS0) cell compartments TMZ 
is converted to 5-(3-methyltriazen-1-yl)imidazole-4-carboxamide (MTIC) then a methylating cation (MeC) and DNA adducts (DNAadd). 
(b) Cell state model that designates GS0, two transition states (GS1 and GS2), glioma proliferating cells and quiescent cells. The brown 
arrows (1, 2, 3, and 8) represent cell transfers, blue arrows (4 and 5) cell proliferation, and red arrows (6, 7, and 9) cell death. The 
bidirectional green arrows in A and B link the PK and cell state models.
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is an endogenous oncometabolite produced in mutant 
IDH1 brain tumors. In lieu of specific PK/PD information 
that would characterize a drug concentration- response 
relationship between a mutant IDH1 inhibitor and D2HG 
concentrations, we used trigonometric functions – sine 
and cosine function – to simulate the time- dependent os-
cillations in D2HG concentrations that could be obtained 
through a multiple- dose regimen of a mutant IDH1 inhibitor. 
The functions are as follows:

where
M = amplitude modulator
A = amplitude
Ω = frequency
φ = phase shift for cosine function
α = phase shift for sine function
The oscillating functions fD2HG and gD2HG are treated 

as state variables, and when multiplied by the “base” cell 
transfer rate constants used in the control, TMZ- sensitive 
and TMZ- resistant models generate time- dependent cell 
transfer rates (see Table S1). The fD2HG and gD2HG 
functions are inverse from one another, which allowed 
the transfer rate constants to cycle in unison so all rate 
constants favoring differentiation are on the same cycle, 
whereas the rate constants favoring dedifferentiation are 
on the opposite cycle (see Figure S1). Untreated mutant 
IDH1 brain tumors are reported to produce D2HG concen-
trations of around 5 mM,8 which are at the midpoint of each 
cycle, and conveniently permit a range between 0 and 10 
within the cycle frequency. Mutant IDH1 inhibitors can sub-
stantially reduce D2HG tumor concentrations,8 and, thus, 
the variations between 0 and 10 over the 7- day period are 
plausible.

The oscillations in the cell transfer rate constants were 
applied to both the TMZ- sensitive and TMZ- resistant mod-
els, as previously shown in Figure 2a (see Figure 2b). 
Except for the oscillations in the cell transfer rates, there 
were no other changes in any of the model parameters 
(see Table S1). The incorporation of the oscillations in the 
TMZ- sensitive case had a negligible effect (a decrease of 
4%) on tumor growth over 1 year; however, introduction 
of the oscillations in the TMZ- resistant model produced a 
pronounced effect on tumor growth, a reduction of 24.7%, 
over 1 year.

The simulated models are meant to introduce cell state 
as a variable in drug therapy and to demonstrate within a 
mathematical framework, rather than a mechanistic one, 
that tumor growth can be manipulated. Kitano,9 a forerun-
ner of systems biology, considered a number of strategies 
to combat and control cancer robustness by decreasing 
heterogeneity to counteract functional redundancies and 
feedback loops. These ideas may translate to the current 
approach in that manipulation of cell state may limit hetero-
geneity and diversification and prevent durable cell stress 
responses. Cell stress caused by continued drug exposure 

initiates a trajectory of cell survival responses that favor the 
development of mutations and clonal behavior that yields 
heterogeneous resistant populations.10 Oscillations in D2HG 
concentrations, and accordingly cell states, may mitigate 
the trajectory to drug resistance by limiting mutations and 
imprinting of cell survival programs, paradoxically through 
instability.

(8)fD2HG=M+A∗cos (Ω∗ (t−φ)

(9)gD2HG=M+A∗sin (Ω∗ (t−α)

Figure 2 (a) Mutant IDH1 brain tumor volume in control (black), 
temozolomide- sensitive (blue), and temozolomide- resistant (red) 
conditions. The control and temozolomide (TMZ)- based curves 
were simulated from the ordinary differential equation (ODE) 
models described in the text and Supplementary Material. 
(b) Mutant IDH1 brain tumor volume in, temozolomide- sensitive 
(solid red), and temozolomide- resistant (dotted red) and the same 
with oscillations in cell transfer rate constants (blue) conditions. 
All tumor volume curves were simulated from the ODE models 
described in the text and Supplementary Material.
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CONCLUSIONS

Plasticity among cancer cells is well recognized; however, 
the focus on the underlying biological control mechanisms 
have yet to appreciate how such processes may be ma-
nipulated for therapeutic advantage. The current simula-
tion results suggest that manipulation of cell state – here 
using oscillating D2HG concentrations – can reduce tumor 
growth, and significantly so when resistance to TMZ occurs. 
Whether these data are mathematical nuances or can be 
mechanistically supported will require additional studies. 
Nonetheless, the idea of manipulating cell state is intriguing 
and may provide a tangible tool to improve drug therapy.

Supplementary Information 

Supplementary information accompanies this paper on the 
CPT: Pharmacometrics & Systems Pharmacology website. 
(www.psp-journal.com)
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